Neighborhood
ε-neighborhood of a:
Uε(a)={x∈Rn∣∣x−a∣∣<ε}
Limit of n dimensional real sequence
n→∞liman=a:
∀ε>0∃N∈N(n≥N→∥an−a∥<ε)
Limit of real function
x→alimf(x)=A:
∀ε>0∃δ>0,∀x∈I(0<∣x−a∣<δ→∣f(x)−A∣<ε)
One-sided limit
x→a+0limf(x)=A:
∀ε>0∃δ>0,∀x∈I(0<x−a<δ→∣f(x)<ε∣)
x→a−0limf(x)=A:
∀ε>0∃δ>0,∀x∈I(0<a−x<δ→∣f(x)<ε∣)
Opeerations
1.λ,μ∈R⇒x→alim{λf(x)+μg(x)}=λα+μβ2.x→alimf(x)g(x)=αβ3.β=0⇒x→alimg(x)f(x)=βα4.x→alim∣f(x)∣=∣α∣
Squeeze theorem
∃δ>0,(f(x)≤g(x)≤h(x)(x∈Uδ(a),x=a)
x→alimf(x)=x→alimg(x)=α⇒x→alimh(x)=α
Corollary
x→alimf(x)=b,y→blimg(y)=g(b)⇒x→alimg(f(x))=g(b)
n-dimensional real sequence
n-dimensional real sequence: sequence in Rn
Corollary
n→∞liman=α⇔n→∞liman1=α1,...,n→∞limann=αn
2-variable function
2-variable function:f:D→R
Domain of f:D
Range of f:f(D)
Limit of 2-variable function
(x,y)→(a,b)limf(x,y)=α:
∀ε>0∃δ>0∀x∈D(0=∣∣x−a∣∣<δ→∣f(x,y)−α∣<ε)
Corollary
1.λ,μ∈R⇒(x,y)→(a,b)lim{λf(x,y)+μg(x,y)}=λα+μβ2.(x,y)→(a,b)limf(x,y)g(x,y)=αβ3.β=0⇒(x,y)→(a,b)limg(x,y)f(x,y)=βα4.(x,y)→(a,b)lim∣f(x,y)∣=∣α∣
Squeeze theorem
(x,y)→(a,b)limg(x,y)=0⇒(x,y)→(a,b)limf(x,y)=α